

- Energy passes through maximum for movement along reaction pathway connecting minima
- Minima in all other directions "perpendicular" to reaction pathwayOne imaginary vibrational frequency

Terminology

- Transition State
 - Geometry at the peak of the *free energy* (G) profile
- Transition Structure
 - Geometry at the peak of the *potential energy* (E) profile

4

Rate Constants

Transition State Theory

$$k = \frac{k_B T}{h} e^{-\Delta G^{\ddagger}/RT}$$

- Rate Constant
- ΔG^{\ddagger} is G(TranState) G(reactant)
- "Transmission" Coefficient
- 0.5 2
- "Recrossings" (reflect back)
- ► Tunneling

5

Rate Constants

Arrhenius Theory

$$k = A e^{-E_a/RT}$$

- Rate Constant
 - ► E_a = E(TranStructure) E(reactant)
- A from hard sphere collision theory

Methods to Find Transition Structures

General Approaches

- Guess at geometry ► Refine
- Modify structure from similar reactions
 Refine
- Run saddle point calculations
 Several techniques
- Run optimized grid
 - ► Vary parameters to get PES
- Not practical for large molecules

8

 $E_a = 84.691 - 48.331 = 36.36 \text{ kcal mol}^{-1}$ (Literature 27 ± 2 kcal mol $^{-1}$)

 $\Delta_r H$ = (-4.776) - (48.331) = -53.107 kcal mol⁻¹ correction: $\Delta_r H$ = (-53.107) + (0.7912) = -52.3158 kcal mol⁻¹

